
cookiecutter-python-package
Release 1.8.2

Konstantinos Lampridis

Dec 15, 2023

CONTENTS:

1 Python Package Generator 1

2 Features 3
2.1 Auto Generated Sample Package Biskotaki . 3
2.2 Generated Python Package Features . 3

3 Quickstart 5
3.1 Installation . 5
3.2 Usage . 5

4 License 7
4.1 Free/Libre and Open Source Software (FLOSS) . 7

5 Indices and tables 13

Python Module Index 15

Index 17

i

ii

CHAPTER

ONE

PYTHON PACKAGE GENERATOR

Python Package Generator supporting 3 different Project types to scaffold.
Emphasizing on CI/CD, Testing and Automation, implemented on top of Cookiecutter.

Source: https://github.com/boromir674/cookiecutter-python-package
Docs: https://python-package-generator.readthedocs.io/en/master/
PyPI: https://pypi.org/project/cookiecutter-python/
CI: https://github.com/boromir674/cookiecutter-python-package/actions/

1

https://python-package-generator.readthedocs.io/en/master/
https://app.codecov.io/gh/boromir674/cookiecutter-python-package
https://bestpractices.coreinfrastructure.org/en/projects/5988
https://codeclimate.com/github/boromir674/cookiecutter-python-package/
https://app.codacy.com/gh/boromir674/cookiecutter-python-package/dashboard?utm_source=github.com&utm_medium=referral&utm_content=boromir674/cookiecutter-python-package&utm_campaign=Badge_Grade
https://codeclimate.com/github/boromir674/cookiecutter-python-package/
https://github.com/boromir674/cookiecutter-python-package
https://python-package-generator.readthedocs.io/en/master/
https://pypi.org/project/cookiecutter-python/
https://github.com/boromir674/cookiecutter-python-package/actions/

cookiecutter-python-package, Release 1.8.2

2 Chapter 1. Python Package Generator

CHAPTER

TWO

FEATURES

1. Scaffold a modern ready-to-develop Python Package (see Quickstart)
2. Automatically generate over 24 files, to setup Test Suite, build scripts & CI Pipeline
3. Python Package Template (source code at src/cookiecutter_python/) implemented as a Cookiecutter
4. Extensively Tested on various systems, factoring the below:

a. System’s platform: “Linux”, “MacOS” & “Windows”
b. System’s Python: 3.7, 3.8, 3.9 & 3.10, 3.11

See the Test Workflow on the CI server.

2.1 Auto Generated Sample Package Biskotaki
Check the Biskotaki Python Package Project, for a taste of the project structure and capabilities this Template can
generate!
It it entirely generated using this Python Package Template:

Source Code hosted on Github at https://github.com/boromir674/biskotaki
Python Package hosted on pypi.org at https://pypi.org/project/biskotaki/
CI Pipeline hosted on Github Actions at https://github.com/boromir674/biskotaki/actions

2.2 Generated Python Package Features
1. Test Suite, using pytest, located in tests dir
2. Parallel Execution of Unit Tests, on multiple cpu’s
3. Documentation Pages, hosted on readthedocs server, located in docs dir
4. Automation, using tox, driven by single tox.ini file

a. Code Coverage measuring
b. Build Command, using the build python package
c. Pypi Deploy Command, supporting upload to both pypi.org and test.pypi.org servers
d. Type Check Command, using mypy
e. Lint Check and Apply commands, using isort and black

5. CI Pipeline, running on Github Actions, defined in .github/
a. Job Matrix, spanning different platform’s and python version’s

1. Platforms: ubuntu-latest, macos-latest
2. Python Interpreters: 3.6, 3.7, 3.8, 3.9, 3.10

b. Parallel Job execution, generated from the matrix, that runs the Test Suite

3

https://github.com/boromir674/cookiecutter-python-package/tree/master/src/cookiecutter_python
https://github.com/boromir674/cookiecutter-python-package/actions
https://github.com/boromir674/biskotaki
https://pypi.org/project/biskotaki/
https://github.com/boromir674/biskotaki/actions
https://docs.pytest.org/en/7.1.x/
https://tox.wiki/en/latest/
https://github.com/pypa/build
https://pypi.org/
https://test.pypi.org/
https://mypy.readthedocs.io/en/stable/
https://pycqa.github.io/isort/
https://black.readthedocs.io/en/stable/
https://github.com/boromir674/cookiecutter-python-package/actions

cookiecutter-python-package, Release 1.8.2

4 Chapter 2. Features

CHAPTER

THREE

QUICKSTART

3.1 Installation

pip install --user cookiecutter-python

3.2 Usage
Open a console/terminal and run:

generate-python

Now, you should have generated a new Project for a Python Package, based on the Template!
Just ‘enter’ (cd into) the newly created directory, ie cd <my-great-python-package>.

Develop your package’s Source Code (business logic) inside src/my_great_python_package dir :)
Develop your package’s Test Suite (ie unit-tests, integration tests) inside tests dir :-)

Try Running the Test Suite!

tox

Read the Documentation’s Use Cases section for more on how to leverage your generated Python Package features.

5

https://github.com/boromir674/cookiecutter-python-package/tree/master/src/cookiecutter_python
https://python-package-generator.readthedocs.io/en/master/contents/30_usage/index.html#new-python-package-use-cases

cookiecutter-python-package, Release 1.8.2

6 Chapter 3. Quickstart

CHAPTER

FOUR

LICENSE

• GNU Affero General Public License v3.0

4.1 Free/Libre and Open Source Software (FLOSS)

4.1.1 Introduction
This is Cookiecutter Python Package, a Template Project used to generate fresh new open source Python Package’s.
The Template is implemented as a cookiecutter and it is available both as source code and as a Python Package in
itself.

Goal of this project is to automate the process of creating a new Python Package, by providing the user with a
“bootstrap” method,
to quickly set up all the support files required to seemlessly build and publish the package on pypi.org (the official
Python Pcakge Index public server).
Additionally, it instruments a basic Test Suite, multiple Commands, as well as a CI pipeline, with parallel execution
of the build matrix, running on Github Actions.

This documentation aims to help people understand what are the features of the library and how they can use
it. It presents some use cases and an overview of the library capabilities and overall design.

4.1.2 Why this Generator?
So, why would one opt for this Python Generator?
It is easy to use, allowing the generation of a completely fresh new Python Package Project, though a cli.
You can immediately have a ci infrastructure and multiple platform-agnostic shell commands working out-of-the-box,
so you can focus on developing your business logic and your test cases.

• It allows scaffolding new projects with a Test Suite included, designed to run Test Cases in parallel (across
multiple cpu’s) for speed.

• New Projects come with a CI pipeline, that triggers every time code is pushed on the remote.
• Supports generating projects suited for developing a library (module), a cli (module+cli) or a pytest plugin.
• The pipeline hosts a Test Workflow on Github Actions CI, designed to stress-test your package.
• Generates a job matrix that spawns parallel CI jobs based on factors:: python versions operating system and

package installation methods
• Extensively tested and built on established software, such as cookiecutter and jinja2.

7

https://github.com/boromir674/cookiecutter-python-package/blob/master/LICENSE
https://github.com/boromir674/cookiecutter-python-package/blob/master/LICENSE
https://bestpractices.coreinfrastructure.org/en/projects/5988

cookiecutter-python-package, Release 1.8.2

4.1.3 Generate New Python Package Project
This python generator was designed to be installed via pip and then invoked through the cli.

Installing the Generator

Cookiecutter Python Package, available as source code on github, is also published
on pypi.org.

Install as PyPi package

Installing cookiecutter-python with pip is the way to go, for getting the generate-python cli onto your machine. Here
we demonstrate how to do that using a

In virtual environment (recommended)

As with any Python Package, it is recommended to install cookiecutter-python inside a python virtual environment.
You can use any of virtualenv, venv, pyenv of the tool of your choice. Here we demonstrate, using virtualenv, by
running the following commands in a console (aka terminal):

1. Create a virtual environment

virtualenv env --python=python3

Open a console (aka terminal) and run:
2. Activate environment

source env/bin/activate

3. Install cookiecutter-python

pip install cookiecutter-python

4. Create symbolic link for the (current) user

ln -s env/bin/generate-python ~/.local/bin/generate-python

Now the generate-python executable should be available (assuming ~/.local/bin is in your PATH)!

8 Chapter 4. License

cookiecutter-python-package, Release 1.8.2

For user (option 2)

One could also opt for a user installation of cookiecutter-python package:

python3 -m pip install --user cookiecutter-python

For all users (option 3)

The least recommended way of installing cookiecutter-python package is to directly install in the host machine:

sudo python3 -m pip install cookiecutter-python

Note the need to invoke using sudo, hence not that much recommended.

Check installation

Now the generate-python cli should be available!
You can verify by running the following:

generate-python --version

Using the CLI

Using the cli is as simple as invoking generate-python from a console.

You can run the following to see all the available parameters you can control:

generate-python --help

The most common way to generate a new Python Package Project is to run:

generate-python

This will prompt you to input some values and create a fresh new Project in the current directory!
Now, simply cd into the generated Project’s directory and enjoy some of the features the generator supplies new
projects with!
More on use cases in the next section.
Ready to enjoy some of your newly generated Python Package Project features available out-of-the-box!?
For instance:

1. Leverage the supplied tox environments to automate various Testing and DevOps related activities.
Assuming you have tox installed (example installation command: python3 -m pip install –user tox) and you have
done a cd into the newly generated Project directory, you can do for example:

a. Run the Test Suite against different combinations of Python versions (ie 3.7, 3.8) and different ways of
installing (ie ‘dev’, ‘sdist’, ‘wheel’) the <my_great_python_package> package:

tox -e "py{3.7, 3.8}-{dev, sdist, wheel}"

b. Check the code for compliance with best practises of the Python packaging ecosystem (ie PyPI, pip),
build sdist and wheel distributions and store them in the dist directory:

tox -e check && tox -e build

c. Deploy the package’s distributions in a pypi (index) server:
1. Deploy to staging, using the test pypi (index) server at test.pypi.org:

4.1. Free/Libre and Open Source Software (FLOSS) 9

https://test.pypi.org/

cookiecutter-python-package, Release 1.8.2

TWINE_USERNAME=username TWINE_PASSWORD=password PACKAGE_DIST_VERSION=1.0.0␣
→˓tox -e deploy

2. Deploy to production, using the production pypi (index) server at pypi.org:

TWINE_USERNAME=username TWINE_PASSWORD=password PACKAGE_DIST_VERSION=1.0.0␣
→˓PYPI_SERVER=pypi tox -e deploy

Note: Setting PYPI_SERVER=pypi indicates to deploy to pypi.org (instead of test.pypi.org).

Note: Please modify the TWINE_USERNAME, TWINE_PASSWORD and
PACKAGE_DIST_VERSION environment variables, accordingly.
TWINE_USERNAME & TWINE_PASSWORD are used to authenticate (user credentials) with the
targeted pypi server.
PACKAGE_DIST_VERSION is used to avoid accidentally uploading distributions of different versions
than intended.

2. Leverage the CI Pipeline and its build matrix to run the Test Suite against a combination of different
Platforms, different Python interpreter versions and different ways of installing the subject Python Package:

Trigger the Test Workflow on the CI server, by pushing a git commit to a remote branch (ie master on
github).
Navigate to the CI Pipeline web interface (hosted on Github Actions) and inspect the build results!

Note: You might have already pushed, in case you answered yes, in the initialize_git_repo prompt, while
generating the Python Package, and in that case, the Test Workflow should have already started running!
Out-of-the-box, triggering the Test Workflow happens only when pushing to the master or dev branch.

4.1.4 Developer’s Corner
Here we offer Guides on how to leverage the CI/CD to do various Development Operations, in a GitOps way.

GitOps Guides

Streamline Documentation Updates

1. Branch of off main Branch, and checkout your topical branch (tb).
2. Create Docs-only changes and commit them to your tb.
3. Push git tag quick-release, to trigger the Docs Release Workflow, on the CI

A new PR, is expected to open from tb to a dedicated docs branch, and automatically merge if Docs Build passed on
rtd CI.
Then, a new PR, is expected to open from dedicated docs branch to main, with extra commits with Sem Ver Bump,
and Changelog updates.

4. Wait for second PR to open, go to github web IU to review it, and merge it.
A new tag is expected to be created (on the new main/master commit), and a PyPI distribution will be uploaded, a
new Docker Image on Dockerhub, and a new Github Release will be created.

10 Chapter 4. License

https://pypi.org/

cookiecutter-python-package, Release 1.8.2

Workflows References

• quick-docs.yaml : Listens to quick-release git tag, and merges tb –> db, after opening PR.

4.1.5 API References
References to the API of the cookiecutter_python Python Distribution.

cookiecutter_python package

Subpackages

cookiecutter_python.hooks package

Submodules

cookiecutter_python.hooks.pre_gen_project module

Pre Cookie Hook: Templated File with jinja2 syntax
exception cookiecutter_python.hooks.pre_gen_project.InputSanitizationError

Bases: Exception
cookiecutter_python.hooks.pre_gen_project.get_request()

cookiecutter_python.hooks.pre_gen_project.hook_main(request)
cookiecutter_python.hooks.pre_gen_project.input_sanitization(request)
cookiecutter_python.hooks.pre_gen_project.main()

cookiecutter_python.hooks.post_gen_project module

Post Cookie Hook: Templated File with jinja2 syntax
Cookiecutter post generation hook script that handles operations after the template project is used to generate a target
project.
cookiecutter_python.hooks.post_gen_project.CLI_ONLY(x)
cookiecutter_python.hooks.post_gen_project.PYTEST_PLUGIN_ONLY(x)
exception cookiecutter_python.hooks.post_gen_project.PostFileRemovalError

Bases: Exception
cookiecutter_python.hooks.post_gen_project.exception(subprocess_exception:

subprocess.CalledProcessError)
cookiecutter_python.hooks.post_gen_project.get_context()→ collections.OrderedDict

Get the Context, that was used by the Templating Engine at render time
cookiecutter_python.hooks.post_gen_project.get_request()

cookiecutter_python.hooks.post_gen_project.git_commit(request)
Commit the staged changes in the generated project.

cookiecutter_python.hooks.post_gen_project.grant_basic_permissions(project_dir: str)
cookiecutter_python.hooks.post_gen_project.initialize_git_repo(project_dir: str)

Initialize the Git repository in the generated project.
cookiecutter_python.hooks.post_gen_project.is_git_repo_clean(project_directory: str)→ bool

Check to confirm if the Git repository is clean and has no uncommitted changes. If its clean return True
otherwise False.

cookiecutter_python.hooks.post_gen_project.iter_files(request)
cookiecutter_python.hooks.post_gen_project.main()

Delete irrelevant to Project Type files and optionally do git commit.

4.1. Free/Libre and Open Source Software (FLOSS) 11

https://github.com/boromir674/cookiecutter-python-package/blob/docs/.github/workflows/quick-docs.yaml

cookiecutter-python-package, Release 1.8.2

cookiecutter_python.hooks.post_gen_project.post_file_removal(request)
Preserve only files relevant to Project Type requested to Generate.
Delete files that are not relevant to the project type requested to generate.
For example, if the user requested a ‘module’ project type, then delete the files that are only relevant to a
‘module+cli’ project.

Parameters request ([type]) – [description]
cookiecutter_python.hooks.post_gen_project.post_hook()

Delete irrelevant to Project Type files and optionally do git commit.
cookiecutter_python.hooks.post_gen_project.run_process_python36_n_below(*args, **kwargs)
cookiecutter_python.hooks.post_gen_project.run_process_python37_n_above(*args, **kwargs)
cookiecutter_python.hooks.post_gen_project.subprocess_run(*args, **kwargs)

Module contents

Module contents

12 Chapter 4. License

CHAPTER

FIVE

INDICES AND TABLES

• genindex
• modindex
• search

13

cookiecutter-python-package, Release 1.8.2

14 Chapter 5. Indices and tables

PYTHON MODULE INDEX

c
cookiecutter_python, 12
cookiecutter_python.hooks, 12
cookiecutter_python.hooks.post_gen_project, 11
cookiecutter_python.hooks.pre_gen_project, 11

15

cookiecutter-python-package, Release 1.8.2

16 Python Module Index

INDEX

C
CLI_ONLY() (in module cookiecutter_python.hooks.post_gen_project), 11
cookiecutter_python

module, 12
cookiecutter_python.hooks

module, 12
cookiecutter_python.hooks.post_gen_project

module, 11
cookiecutter_python.hooks.pre_gen_project

module, 11

E
exception() (in module cookiecutter_python.hooks.post_gen_project), 11

G
get_context() (in module cookiecutter_python.hooks.post_gen_project), 11
get_request() (in module cookiecutter_python.hooks.post_gen_project), 11
get_request() (in module cookiecutter_python.hooks.pre_gen_project), 11
git_commit() (in module cookiecutter_python.hooks.post_gen_project), 11
grant_basic_permissions() (in module cookiecutter_python.hooks.post_gen_project), 11

H
hook_main() (in module cookiecutter_python.hooks.pre_gen_project), 11

I
initialize_git_repo() (in module cookiecutter_python.hooks.post_gen_project), 11
input_sanitization() (in module cookiecutter_python.hooks.pre_gen_project), 11
InputSanitizationError, 11
is_git_repo_clean() (in module cookiecutter_python.hooks.post_gen_project), 11
iter_files() (in module cookiecutter_python.hooks.post_gen_project), 11

M
main() (in module cookiecutter_python.hooks.post_gen_project), 11
main() (in module cookiecutter_python.hooks.pre_gen_project), 11
module

cookiecutter_python, 12
cookiecutter_python.hooks, 12
cookiecutter_python.hooks.post_gen_project, 11
cookiecutter_python.hooks.pre_gen_project, 11

P
post_file_removal() (in module cookiecutter_python.hooks.post_gen_project), 11

post_hook() (in module cookiecutter_python.hooks.post_gen_project), 12
PostFileRemovalError, 11
PYTEST_PLUGIN_ONLY() (in module cookiecutter_python.hooks.post_gen_project), 11

R
run_process_python36_n_below() (in module cookiecutter_python.hooks.post_gen_project), 12
run_process_python37_n_above() (in module cookiecutter_python.hooks.post_gen_project), 12

S
subprocess_run() (in module cookiecutter_python.hooks.post_gen_project), 12

17

	Python Package Generator
	Features
	Auto Generated Sample Package Biskotaki
	Generated Python Package Features

	Quickstart
	Installation
	Usage

	License
	Free/Libre and Open Source Software (FLOSS)
	Introduction
	Why this Generator?
	Generate New Python Package Project
	Installing the Generator
	Install as PyPi package
	In virtual environment (recommended)
	For user (option 2)
	For all users (option 3)

	Check installation

	Using the CLI

	Developer’s Corner
	GitOps Guides
	Streamline Documentation Updates
	Workflows References

	API References
	cookiecutter_python package
	Subpackages
	cookiecutter_python.hooks package
	Submodules
	cookiecutter_python.hooks.pre_gen_project module
	cookiecutter_python.hooks.post_gen_project module
	Module contents

	Module contents

	Indices and tables
	Python Module Index
	Index

