

Welcome to Cookiecutter Python Package documentation!

Python Package Generator

[image: GitHub Workflow Status (with event)] [image: Codecov] [https://app.codecov.io/gh/boromir674/cookiecutter-python-package] [image: Read the Docs (version)] [https://python-package-generator.readthedocs.io/en/master/] [image: Maintainability] [https://codeclimate.com/github/boromir674/cookiecutter-python-package/] [image: Codacy] [https://app.codacy.com/gh/boromir674/cookiecutter-python-package/dashboard?utm_source=github.com&utm_medium=referral&utm_content=boromir674/cookiecutter-python-package&utm_campaign=Badge_Grade] [image: Code Climate technical debt] [https://codeclimate.com/github/boromir674/cookiecutter-python-package/]

[image: Production Version] [https://pypi.org/project/cookiecutter-python/] [image: PyPI - Wheel] [https://pypi.org/project/cookiecutter-python] [image: Supported Python versions] [https://pypi.org/project/cookiecutter-python] [image: GitHub commits since tagged version (branch)] [https://github.com/boromir674/cookiecutter-python-package/compare/v1.12.2..master] [image: GitHub commits since latest release (by SemVer)]

[image: PyPI - Downloads] [https://pypistats.org/packages/cookiecutter-python] [image: OpenSSF] [https://bestpractices.coreinfrastructure.org/en/projects/5988] [image: Ruff] [https://docs.astral.sh/ruff/] [image: Black] [https://github.com/psf/black] [image: GitHub] [https://github.com/boromir674/cookiecutter-python-package/blob/master/LICENSE]

Generate Python Project and enjoy streamlined “DevOps” using a powerful CI/CD Pipeline.

Documentation available at https://python-package-generator.readthedocs.io/.

What’s included?

	Generator of Python Project (see Quickstart), with CLI for Linux, MacOS, and Windows

	Option to Generate Python Package designed as module, module+cli, or pytest-plugin!

	Scaffold over 24 files, from Template [https://github.com/boromir674/cookiecutter-python-package/tree/master/src/cookiecutter_python/%7B%7B%20cookiecutter.project_slug%20%7D%7D], to have a ready-to-develop Project equiped with:

	Fully-featured CI/CD Pipeline, running on Github Actions [https://github.com/boromir674/cookiecutter-python-package/actions], defined in .github/

	Continuous Delivery to PyPI (ie pypi.org [https://pypi.org/], test.pypi.org [https://test.pypi.org/]) and Dockerhub

	Continuous Integration, with Test Suite running pytest [https://docs.pytest.org/en/7.1.x/] , located in tests dir

	Continuous Documentation, building with mkdocs or sphinx, and hosting on readthedocs, located in docs dir

	Static Type Checking, using mypy [https://mypy.readthedocs.io/en/stable/]

	Lint Check and Apply commands, using the fast Ruff [https://docs.astral.sh/ruff/] linter, along with standard isort [https://pycqa.github.io/isort/], and black [https://black.readthedocs.io/en/stable/]

	Build Command, using the build [https://github.com/pypa/build] python package

What to expect?

You can to be up and running with a new Python Package, and run workflows on Github Actions, such as:

[image: CI Pipeline, running on Github Actions, for a Biskotaki Python Package]
Link: https://github.com/boromir674/biskotaki/actions/runs/4157571651

	CI Pipeline, running on Github Actions [https://github.com/boromir674/cookiecutter-python-package/actions], defined in .github/

	Job Matrix, spanning different platform’s and python version’s

	Platforms: ubuntu-latest, macos-latest

	Python Interpreters: 3.6, 3.7, 3.8, 3.9, 3.10

	Parallel Job execution, generated from the matrix, that runs the Test Suite

	Artifact store of Source and Wheel Distributions, factoring Platform and Python Version

Auto Generated Sample Package Biskotaki

Check the Biskotaki Python Package Project, for a taste of the project structure and capabilities this Template can generate!

It it entirely generated using this Python Package Template:

Source Code hosted on Github at https://github.com/boromir674/biskotaki

Python Package hosted on pypi.org at https://pypi.org/project/biskotaki/

CI Pipeline hosted on Github Actions at https://github.com/boromir674/biskotaki/actions

Quickstart

To install the latest Generator in your environment, run:

pip install cookiecutter-python

The generate-python CLI should become available in your environment.

Next, create a file, let’s call it gen-config.yml, with the following content:

default_context:
 project_name: Demo Generated Project
 project_type: module+cli
 full_name: John Doe
 email: john.doe@something.org
 github_username: john-doe
 project_short_description: 'Demo Generated Project Description'
 initialize_git_repo: no
 interpreters: {"supported-interpreters": ["3.8", "3.9", "3.10", "3.11"]}

To generate a Python Package Project, run:

mkdir gen-demo-dir
cd gen-demo-dir

generate-python --config-file ../gen-config.yml --no-input

Now, you should have generated a new Project for a Python Package, based on the Template [https://github.com/boromir674/cookiecutter-python-package/tree/master/src/cookiecutter_python/%7B%7B%20cookiecutter.project_slug%20%7D%7D]!

The Project should be located in the newly created demo-generated-project directory.

To leverage all out-of-the-box development operations (ie scripts), install tox [https://tox.wiki/en/latest/]:

python3 -m pip install --user 'tox<4'

To verify tox available in your environment, run: tox --version

Please, do a cd into the newly created directory, ie cd <my-great-python-package>.

To run the Test Suite, cd into the newly created Project folder, and run:

tox -e dev

All Tests should pass, and you should see a coverage report!

To run Type Checking against the Source Code, run:

tox -e type

All Type Checks should pass!

To setup a Git Repository, run:

git init
git add .
git checkout -b main
git commit -m "Initial commit"

To setup a Remote Repository, run for example:

git remote add origin <remote-repository-url>
git push -u origin main

To trigger the CI/CD Pipeline, run:

git push

Navigate to your github.com/username/your-repo/actions page, to see the CI Pipeline running!

Develop your package’s Source Code (business logic) inside src/my_great_python_package dir :)

Develop your package’s Test Suite (ie unit-tests, integration tests) inside tests dir :-)

Read the Documentation’s Use Cases [https://python-package-generator.readthedocs.io/en/master/contents/30_usage/index.html#new-python-package-use-cases] section for more on how to leverage your generated Python Package features.

Next Steps

To prepare for an Open Source Project Development Lifecycle, you should visit the following websites:

	PyPI, test.pypi.org, Dockerhub, and Read the Docs, for setting up Release and Documentation Pipelines

	github.com/your-account to configure Actions, through the web UI

	Codecov, Codacy, and Codeclimate, for setting up Automated Code Quality, with CI Pipelines

	https://www.bestpractices.dev/ for registering your Project for OpenSSF Best Practices Badge

Happy Developing!

License

[image: GitHub] [https://github.com/boromir674/cookiecutter-python-package/blob/master/LICENSE]

	GNU Affero General Public License v3.0 [https://github.com/boromir674/cookiecutter-python-package/blob/master/LICENSE]

Free/Libre and Open Source Software (FLOSS)

[image: OpenSSF] [https://bestpractices.coreinfrastructure.org/en/projects/5988]

Contents:

	Introduction

	Why this Generator?
	Robust CLI

	“DevOps”: aka Automations and CI/CD

	Approved Tooling

	Template Variant

	Generate New Python Package Project
	Installing the Generator

	Using the CLI

	Developer’s Corner
	GitOps Guides

	API References
	cookiecutter_python package

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This is Cookiecutter Python Package, a Template Project used to generate fresh new open source Python Package’s.

The Template is implemented as a cookiecutter and it is available both as source code and as a Python Package in itself.

Goal of this project is to automate the process of creating a new Python Package, by providing the user with a “bootstrap” method,

to quickly set up all the support files required to seemlessly build and publish the package on pypi.org (the official Python Pcakge Index public server).

Additionally, it instruments a basic Test Suite, multiple Commands, as well as a CI pipeline, with parallel execution of the build matrix, running on Github Actions.

This documentation aims to help people understand what are the features of the library and how they can use

it. It presents some use cases and an overview of the library capabilities and overall design.

Why this Generator?

So, why choose this Python Package Generator?

Robust CLI

You want an easy-to-use, cross-platform CLI.

	It offers an 1-click command, or option for an interactive wizard

	Tested on 15 different setups, across multiple Platforms and Python Interpreters

	OS: {Ubuntu, MacOS, Windows} X Python: {3.7, 3.8, 3.9, 3.10, 3.11}

	Built on established software, such as cookiecutter and jinja2

“DevOps”: aka Automations and CI/CD

You want to focus on your business logic and test cases, in new Python projects.

	Scaffolded project is one push away from triggering its CI/CD pipeline on Github Actions.

	Continuous Deployment, publishing at pypi.org, Docker Hub, and Read The Docs

	Designed for GitOps, supporting various automated developer activities

	Automations with same entrypoint for both CI and Local run, via tox

	Stress-Testing, with Job Matrix spanning multiple Python Interpreters, Operating Systems

Approved Tooling

You want the best tools under your belt, for your development lifecycle.

	tox, poetry, ruff, mypy, pytest, black, isort, mkdocs, sphinx

Template Variant

You want poetry, but what if you want to develop a pytest plugin?

	Generate module: a Python Distribution, with python API/sdk

	configured with poetry backend

	Generate module+cli: a Python Distribution, with a CLI and a python API/sdk

	configured with poetry backend

	Generate pytest-plugin: a Python Distribution, designed for a pytest plugin

	configured with setuptools backend, as Required by pytest!

Generate New Python Package Project

This python generator was designed to be installed via pip and then invoked through
the cli.

Installing the Generator

Cookiecutter Python Package, available as source code on github, is also published

on pypi.org.

Install as PyPi package

Installing cookiecutter-python with pip is the way to go, for getting the
generate-python cli onto your machine. Here we demonstrate how to do that using a

In virtual environment (recommended)

As with any Python Package, it is recommended to install cookiecutter-python inside a
python virtual environment. You can use any of virtualenv, venv, pyenv of the
tool of your choice. Here we demonstrate, using virtualenv, by running the following commands
in a console (aka terminal):

	Create a virtual environment

virtualenv env --python=python3

Open a console (aka terminal) and run:

	Activate environment

source env/bin/activate

	Install cookiecutter-python

pip install cookiecutter-python

	Create symbolic link for the (current) user

ln -s env/bin/generate-python ~/.local/bin/generate-python

Now the generate-python executable should be available (assuming ~/.local/bin is in your PATH)!

For user (option 2)

One could also opt for a user installation of cookiecutter-python package:

python3 -m pip install --user cookiecutter-python

For all users (option 3)

The least recommended way of installing cookiecutter-python package is to
directly install in the host machine:

sudo python3 -m pip install cookiecutter-python

Note the need to invoke using sudo, hence not that much recommended.

Check installation

Now the generate-python cli should be available!

You can verify by running the following:

generate-python --version

Using the CLI

Using the cli is as simple as invoking generate-python from a console.

You can run the following to see all the available parameters you can control:

generate-python --help

The most common way to generate a new Python Package Project is to run:

generate-python

This will prompt you to input some values and create a fresh new Project in the
current directory!

Now, simply cd into the generated Project’s directory and enjoy some
of the features the generator supplies new projects with!

More on use cases in the next section.

Ready to enjoy some of your newly generated Python Package Project features available out-of-the-box!?

For instance:

	Leverage the supplied tox environments to automate various Testing and DevOps related activities.

Assuming you have tox installed (example installation command: python3 -m pip install –user tox)
and you have done a cd into the newly generated Project directory, you can do for example:

	Run the Test Suite against different combinations of Python versions (ie 3.7, 3.8) and different ways of installing (ie ‘dev’, ‘sdist’, ‘wheel’) the <my_great_python_package> package:

tox -e "py{3.7, 3.8}-{dev, sdist, wheel}"

	Check the code for compliance with best practises of the Python packaging ecosystem (ie PyPI, pip),
build sdist and wheel distributions and store them in the dist directory:

tox -e check && tox -e build

	Deploy the package’s distributions in a pypi (index) server:

	Deploy to staging, using the test pypi (index) server at test.pypi.org [https://test.pypi.org/]:

TWINE_USERNAME=username TWINE_PASSWORD=password PACKAGE_DIST_VERSION=1.0.0 tox -e deploy

	Deploy to production, using the production pypi (index) server at pypi.org [https://pypi.org/]:

TWINE_USERNAME=username TWINE_PASSWORD=password PACKAGE_DIST_VERSION=1.0.0 PYPI_SERVER=pypi tox -e deploy

Note

Setting PYPI_SERVER=pypi indicates to deploy to pypi.org (instead of test.pypi.org).

Note

Please modify the TWINE_USERNAME, TWINE_PASSWORD and PACKAGE_DIST_VERSION environment variables, accordingly.

TWINE_USERNAME & TWINE_PASSWORD are used to authenticate (user credentials) with the targeted pypi server.

PACKAGE_DIST_VERSION is used to avoid accidentally uploading distributions of different versions than intended.

	Leverage the CI Pipeline and its build matrix to run the Test Suite against a combination of
different Platforms, different Python interpreter versions and different ways of installing the subject Python Package:

Trigger the Test Workflow on the CI server, by pushing a git commit to a remote branch (ie master on github).

Navigate to the CI Pipeline web interface (hosted on Github Actions) and inspect the build results!

Note

You might have already pushed, in case you answered yes, in the initialize_git_repo prompt, while generating the Python Package,
and in that case, the Test Workflow should have already started running!

Out-of-the-box, triggering the Test Workflow happens only when pushing to the master or dev branch.

Developer’s Corner

Here we offer Guides on how to leverage the CI/CD to do various Development
Operations, in a GitOps way.

GitOps Guides

	Streamline Documentation Updates

Streamline Documentation Updates

	Branch of off main Branch, and checkout your topical branch (tb).

	Create Docs-only changes and commit them to your tb.

	Push git tag quick-release, to trigger the Docs Release Workflow, on the CI

A new PR, is expected to open from tb to a dedicated docs branch,
and automatically merge if Docs Build passed on rtd CI.

Then, a new PR, is expected to open from dedicated docs branch to main,
with extra commits with Sem Ver Bump, and Changelog updates.

	Wait for second PR to open, go to github web IU to review it, and merge it.

A new tag is expected to be created (on the new main/master commit),
and a PyPI distribution will be uploaded, a new Docker Image on Dockerhub,
and a new Github Release will be created.

Workflows References

	quick-docs.yaml [https://github.com/boromir674/cookiecutter-python-package/blob/docs/.github/workflows/quick-docs.yaml] : Listens to quick-release git tag, and merges tb –> db, after opening PR.

API References

References to the API of the cookiecutter_python Python Distribution.

	cookiecutter_python package
	Subpackages
	cookiecutter_python.hooks package
	Submodules

	cookiecutter_python.hooks.pre_gen_project module

	cookiecutter_python.hooks.post_gen_project module

	Module contents

	Module contents

cookiecutter_python package

Subpackages

	cookiecutter_python.hooks package
	Submodules

	cookiecutter_python.hooks.pre_gen_project module

	cookiecutter_python.hooks.post_gen_project module

	Module contents

Module contents

cookiecutter_python.hooks package

Submodules

cookiecutter_python.hooks.pre_gen_project module

Pre Cookie Hook: Templated File with jinja2 syntax

	
exception cookiecutter_python.hooks.pre_gen_project.InputSanitizationError

	Bases: Exception

	
cookiecutter_python.hooks.pre_gen_project.get_request()

	

	
cookiecutter_python.hooks.pre_gen_project.hook_main(request)

	

	
cookiecutter_python.hooks.pre_gen_project.input_sanitization(request)

	

	
cookiecutter_python.hooks.pre_gen_project.main()

	

cookiecutter_python.hooks.post_gen_project module

Post Cookie Hook: Templated File with jinja2 syntax

Cookiecutter post generation hook script that handles operations after the
template project is used to generate a target project.

	
cookiecutter_python.hooks.post_gen_project.CLI_ONLY(x)

	

	
cookiecutter_python.hooks.post_gen_project.PYTEST_PLUGIN_ONLY(x)

	

	
exception cookiecutter_python.hooks.post_gen_project.PostFileRemovalError

	Bases: Exception

	
cookiecutter_python.hooks.post_gen_project.exception(subprocess_exception: subprocess.CalledProcessError)

	

	
cookiecutter_python.hooks.post_gen_project.get_context() → collections.OrderedDict

	Get the Context, that was used by the Templating Engine at render time

	
cookiecutter_python.hooks.post_gen_project.get_request()

	

	
cookiecutter_python.hooks.post_gen_project.git_commit(request)

	Commit the staged changes in the generated project.

	
cookiecutter_python.hooks.post_gen_project.grant_basic_permissions(project_dir: str)

	

	
cookiecutter_python.hooks.post_gen_project.initialize_git_repo(project_dir: str)

	Initialize the Git repository in the generated project.

	
cookiecutter_python.hooks.post_gen_project.is_git_repo_clean(project_directory: str) → bool

	Check to confirm if the Git repository is clean and has no uncommitted
changes. If its clean return True otherwise False.

	
cookiecutter_python.hooks.post_gen_project.iter_files(request)

	

	
cookiecutter_python.hooks.post_gen_project.main()

	Delete irrelevant to Project Type files and optionally do git commit.

	
cookiecutter_python.hooks.post_gen_project.post_file_removal(request)

	Preserve only files relevant to Project Type requested to Generate.

Delete files that are not relevant to the project type requested to
generate.

For example, if the user requested a ‘module’ project type,
then delete the files that are only relevant to a ‘module+cli’ project.

	Parameters

	request ([type]) – [description]

	
cookiecutter_python.hooks.post_gen_project.post_hook()

	Delete irrelevant to Project Type files and optionally do git commit.

	
cookiecutter_python.hooks.post_gen_project.run_process_python36_n_below(*args, **kwargs)

	

	
cookiecutter_python.hooks.post_gen_project.run_process_python37_n_above(*args, **kwargs)

	

	
cookiecutter_python.hooks.post_gen_project.subprocess_run(*args, **kwargs)

	

Module contents

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cookiecutter_python	

 	
 	
 cookiecutter_python.hooks	

 	
 	
 cookiecutter_python.hooks.post_gen_project	

 	
 	
 cookiecutter_python.hooks.pre_gen_project	

Index

 C
 | E
 | G
 | H
 | I
 | M
 | P
 | R
 | S

C

 	
 	CLI_ONLY() (in module cookiecutter_python.hooks.post_gen_project)

 	
 cookiecutter_python

 	module

 	
 cookiecutter_python.hooks

 	module

 	
 	
 cookiecutter_python.hooks.post_gen_project

 	module

 	
 cookiecutter_python.hooks.pre_gen_project

 	module

E

 	
 	exception() (in module cookiecutter_python.hooks.post_gen_project)

G

 	
 	get_context() (in module cookiecutter_python.hooks.post_gen_project)

 	get_request() (in module cookiecutter_python.hooks.post_gen_project)

 	(in module cookiecutter_python.hooks.pre_gen_project)

 	
 	git_commit() (in module cookiecutter_python.hooks.post_gen_project)

 	grant_basic_permissions() (in module cookiecutter_python.hooks.post_gen_project)

H

 	
 	hook_main() (in module cookiecutter_python.hooks.pre_gen_project)

I

 	
 	initialize_git_repo() (in module cookiecutter_python.hooks.post_gen_project)

 	input_sanitization() (in module cookiecutter_python.hooks.pre_gen_project)

 	
 	InputSanitizationError

 	is_git_repo_clean() (in module cookiecutter_python.hooks.post_gen_project)

 	iter_files() (in module cookiecutter_python.hooks.post_gen_project)

M

 	
 	main() (in module cookiecutter_python.hooks.post_gen_project)

 	(in module cookiecutter_python.hooks.pre_gen_project)

 	
 module

 	cookiecutter_python

 	cookiecutter_python.hooks

 	cookiecutter_python.hooks.post_gen_project

 	cookiecutter_python.hooks.pre_gen_project

P

 	
 	post_file_removal() (in module cookiecutter_python.hooks.post_gen_project)

 	post_hook() (in module cookiecutter_python.hooks.post_gen_project)

 	
 	PostFileRemovalError

 	PYTEST_PLUGIN_ONLY() (in module cookiecutter_python.hooks.post_gen_project)

R

 	
 	run_process_python36_n_below() (in module cookiecutter_python.hooks.post_gen_project)

 	
 	run_process_python37_n_above() (in module cookiecutter_python.hooks.post_gen_project)

S

 	
 	subprocess_run() (in module cookiecutter_python.hooks.post_gen_project)

Using the cli is as simple as invoking generate-python from a console.

You can run the following to see all the available parameters you can control:

generate-python --help

The most common way to generate a new Python Package Project is to run:

generate-python

This will prompt you to input some values and create a fresh new Project in the
current directory!

Now, simply cd into the generated Project’s directory and enjoy some
of the features the generator supplies new projects with!

More on use cases in the next section.

Cookiecutter Python Package, available as source code on github, is also published

on pypi.org.

Install as PyPi package

Installing cookiecutter-python with pip is the way to go, for getting the
generate-python cli onto your machine. Here we demonstrate how to do that using a

In virtual environment (recommended)

As with any Python Package, it is recommended to install cookiecutter-python inside a
python virtual environment. You can use any of virtualenv, venv, pyenv of the
tool of your choice. Here we demonstrate, using virtualenv, by running the following commands
in a console (aka terminal):

	Create a virtual environment

virtualenv env --python=python3

Open a console (aka terminal) and run:

	Activate environment

source env/bin/activate

	Install cookiecutter-python

pip install cookiecutter-python

	Create symbolic link for the (current) user

ln -s env/bin/generate-python ~/.local/bin/generate-python

Now the generate-python executable should be available (assuming ~/.local/bin is in your PATH)!

For user (option 2)

One could also opt for a user installation of cookiecutter-python package:

python3 -m pip install --user cookiecutter-python

For all users (option 3)

The least recommended way of installing cookiecutter-python package is to
directly install in the host machine:

sudo python3 -m pip install cookiecutter-python

Note the need to invoke using sudo, hence not that much recommended.

Check installation

Now the generate-python cli should be available!

You can verify by running the following:

generate-python --version

 Ready to enjoy some of your newly generated Python Package Project features available out-of-the-box!?

For instance:

	Leverage the supplied tox environments to automate various Testing and DevOps related activities.

Assuming you have tox installed (example installation command: python3 -m pip install –user tox)
and you have done a cd into the newly generated Project directory, you can do for example:

	Run the Test Suite against different combinations of Python versions (ie 3.7, 3.8) and different ways of installing (ie ‘dev’, ‘sdist’, ‘wheel’) the <my_great_python_package> package:

tox -e "py{3.7, 3.8}-{dev, sdist, wheel}"

	Check the code for compliance with best practises of the Python packaging ecosystem (ie PyPI, pip),
build sdist and wheel distributions and store them in the dist directory:

tox -e check && tox -e build

	Deploy the package’s distributions in a pypi (index) server:

	Deploy to staging, using the test pypi (index) server at test.pypi.org [https://test.pypi.org/]:

TWINE_USERNAME=username TWINE_PASSWORD=password PACKAGE_DIST_VERSION=1.0.0 tox -e deploy

	Deploy to production, using the production pypi (index) server at pypi.org [https://pypi.org/]:

TWINE_USERNAME=username TWINE_PASSWORD=password PACKAGE_DIST_VERSION=1.0.0 PYPI_SERVER=pypi tox -e deploy

Note

Setting PYPI_SERVER=pypi indicates to deploy to pypi.org (instead of test.pypi.org).

Note

Please modify the TWINE_USERNAME, TWINE_PASSWORD and PACKAGE_DIST_VERSION environment variables, accordingly.

TWINE_USERNAME & TWINE_PASSWORD are used to authenticate (user credentials) with the targeted pypi server.

PACKAGE_DIST_VERSION is used to avoid accidentally uploading distributions of different versions than intended.

	Leverage the CI Pipeline and its build matrix to run the Test Suite against a combination of
different Platforms, different Python interpreter versions and different ways of installing the subject Python Package:

Trigger the Test Workflow on the CI server, by pushing a git commit to a remote branch (ie master on github).

Navigate to the CI Pipeline web interface (hosted on Github Actions) and inspect the build results!

Note

You might have already pushed, in case you answered yes, in the initialize_git_repo prompt, while generating the Python Package,
and in that case, the Test Workflow should have already started running!

Out-of-the-box, triggering the Test Workflow happens only when pushing to the master or dev branch.

 _images/ci-open-v1.png
test.yaml
on: push

@ Read Workflow Env Section ... 2s

@ check_which_git_branch_we... 0s

Matrix: test_suite

@ test_suite (macos-latest, ...
@ test_suite (macos-latest, ...
@ test_suite (macos-latest, ...
@ test_suite (macos-latest, ...
@ test_suite (macos-latest, ...
@ test_suite (ubuntu-latest...
@ test_suite (ubuntu-latest...
@ test_suite (ubuntu-latest...
@ test_suite (ubuntu-latest...
@ test_suite (ubuntu-latest...
@ test_suite (windows-late...
@ test_suite (windows-late...
@ test_suite (windows-late...
@ test_suite (windows-late...

@ test_suite (windows-late...

2m 43s

2m51s

3ma2s

2m 355

4m 6s

1m 565

1m 355

1m 365

1m 33s

1m57s

2m 555

4m 10s

2m 59s

2m 555

2m 48s

@ Draw Python Dependency G... 3s

Matrix: Static Code Analysis & Lint

@ 15 jobs completed

Show all jobs.

@ pypi_publish

@ codecov_coverage_host

@ docker_build

os

245

im13s

() Draw Python Dependencies ... 0s

nav.xhtml

 Table of Contents

 		
 Welcome to Cookiecutter Python Package documentation!

 		
 Introduction

 		
 Why this Generator?

 		
 Robust CLI

 		
 “DevOps”: aka Automations and CI/CD

 		
 Approved Tooling

 		
 Template Variant

 		
 Generate New Python Package Project

 		
 Installing the Generator

 		
 Install as PyPi package

 		
 Check installation

 		
 Using the CLI

 		
 Developer’s Corner

 		
 GitOps Guides

 		
 Streamline Documentation Updates

 		
 API References

 		
 cookiecutter_python package

 		
 Subpackages

 		
 Module contents

_static/plus.png

_static/file.png

_static/minus.png

